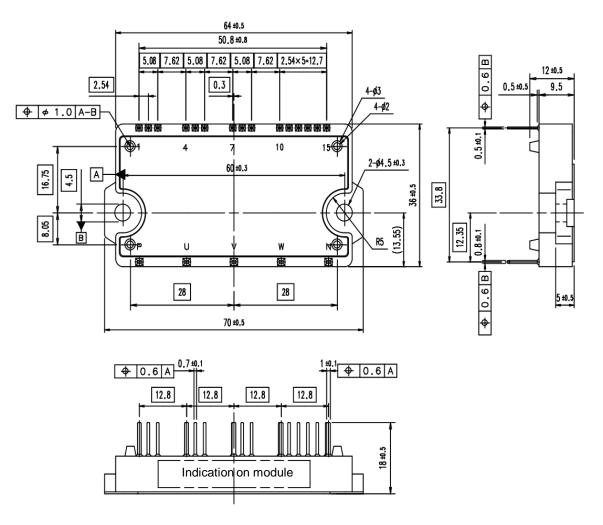


IGBT Modules


IGBT Module (X series) 650V / 30A / IPM

■ Features

- Temperature protection provided by directly detecting the junction temperature of the IGBTs
- ·Low power loss and soft switching
- ·High performance and high reliability IGBT with overheating protection
- Higher reliability because of a big decrease in number of parts in built-in control circuit

■ Outline drawing (Unit:mm)

Weight:55g(typ.)

IGBT Modules

■ Absolute maximum ratings

 $T_{\rm C}$ =25°C, $T_{\rm vi}$ =25°C, $V_{\rm CC}$ =15V unless otherwise specified

	İtems	Symbol	Conditions	Min.	Max.	Units
Co	ollector-emitter voltage	V_{CES}	*1	-	650	V
Sh	ort circuit voltage	$V_{ m SC}$	*2	200	400	V
Ŀ		I_{C}	DC	-	30	Α
)rte	Collector current	I _{CP}	1ms	-	60	Α
Inverter		-/ _C	Duty=100% *3	-	30	Α
三	Total power dissipation	P_{tot}	IGBT 1 device *4	-	133	W
	Collector current	I_{C}	DC	-	-	Α
Brake		I _{CP}	1ms	-	-	Α
Bra	Forward current of diode	I _F		-	-	Α
	Total power dissipation	P_{tot}	IGBT 1 device *4	-	-	W
Sι	ipply voltage of pre-driver	V _{cc}	*5	-0.5	20	V
Inp	out signal voltage	V_{in}	*6	-0.5	$V_{\rm CC} + 0.5$	V
Ala	arm signal voltage	V_{ALM}	*7	-0.5	V_{CC}	٧
Ala	arm signal current	I _{ALM}	*8	-	20	mΑ
Vir	tual junction temperature	T_{vj}		-	175	°C
Op	perating virtual junction temperature	T_{vjop}		-	150	°C
Op	perating case temperature	T_{c}		-20	125	°C
Sto	orage temperature	$T_{ m stg}$		-40	125	°C
	older temperature	T_{sol}	*9	-	260	°C
	plating voltage	V _{isol}	*10	-	2500	Vrms
	ounting torque of screws to heat sink	M _s	Mounting(M4)	-	1.7	Nm
Mo	ounting torque of screws to terminals	$M_{\rm t}$	Main Terminals(M4)	-	-	Nm
NI.	too	· · · · · · · · · · · · · · · · · · ·				

- *1: V_{CES} shall be applied to the input voltage between terminal P-(U,V, W) and (U,V, W)-N.
- *2: In the case of the load inductance to be over 1µH.
- *3: Duty=150°C/ $R_{th(i-c)}/(I_F \times V_F \text{ Max.}) \times 100$
- *4: P_{tot} =150°C/ $R_{\text{th(i-c)}}$ *5: V_{CC} shall be applied to the input voltage between terminal No.3 and 1, 6 and 4, 9 and 7,11 and 10.
- *6: V_{in} shall be applied to the input voltage between terminal No.2 and 1, 5 and 4, 8 and 7,12~14 and 10.
- *7: $V_{\rm ALM}$ shall be applied to the voltage between terminal No.15 and 10.
- *8: I_{ALM} shall be applied to the input current to terminal No.15.
- *9: Immersion time 10±1sec. 1time
- *10: Terminal to base, 50/60Hz sine wave 1min. All terminals should be connected together during the test.

■ Electrical characteristics

Main circuit

 $T_{\rm vi}$ =25°C, $V_{\rm CC}$ =15V unless otherwise specified

	Items	Symbol	Co	nditions	Min.	Тур.	Max.	Units
ē	Collector current at off signal Input	I _{CES}	V _{CE} :650V		-	ı	1.0	mA
Inverter	Collector-emitter	$V_{\text{CE(sat)}}$	I _c = 30A	Terminal	-	-	1.80	V
≥	saturation voltage	• CE(sat)		Chip	-	1.40	-	V
	Forward voltage of FWD	$V_{\scriptscriptstyle extsf{F}}$	I _F = 30A	Terminal	-	-	2.00	V
	I of ward voltage of 1 VVD	V _F		Chip	-	1.60	-	V
0	Collector current at off signal Input	I _{CES}	V _{CE} =-V		-	ı	-	mA
Brake	Collector-emitter	V	I _C = -A	Terminal	-	ı	-	V
] Sign	saturation voltage	$V_{{\sf CE}({\sf sat})}$		Chip	-	ı	-	V
1	Forward voltage of FWD	$V_{\scriptscriptstyle \sf F}$	I _F = -A	Terminal	-	ı	-	V
	Torward voltage or T VID	VF		Chip	-	ı	-	V
Switch	hing time	$t_{ ext{on}}$	I _c = 30A	T _{vj} =150°C	0.5	1	-	μs
*11		$t_{\sf d(on)}$	$V_{\rm DC}$ = 300V		0.5	-		μs
		$t_{ m off}$			-	-	2.0	μs
		$t_{d(off)}$			-	-	1.7	μs
		t _{rr}	$I_{\rm F}$ = 30A $V_{\rm DC}$ = 300V	T _{vi} =150°C	-	-	0.5	μs

^{*11:} Turn on time $(t_{on}) = t_{d(on)} + t_r$, Turn off time $(t_{off}) = t_{d(off)} + t_f$

IGBT Modules

Control circuit

 T_{vi} =25°C, V_{CC} =15V unless otherwise specified

Item	Symbol	Conditions		Min.	Тур.	Max.	Units
Supply current of P-side	I _{ccp}	Switching frequency $(f_{SW}) = 0$	15kHz	-	-	9	mΑ
pre-driver (per one unit)	- сср	$T_{\rm C} = -20 \sim 125^{\circ}{\rm C}$					
Supply current of N-side	1					23	mΑ
pre-driver	I con						
Input signal threshold voltage	$V_{\text{inth(on)}}$	V _{in} -GND	ON	1.2	1.4	1.6	V
	$V_{\text{inth(off)}}$	V in OND	OFF	1.5	1.7	1.9	V

Protection circuit

 T_{vi} =25°C, V_{CC} =15V unless otherwise specified

Item	Symbol	Conditions		Min.	Тур.	Max.	Units
Over current Inverter	1	T _{vi} =150°C		45	-	-	Α
protection level Brake	I _{oc}			-	-	-	Α
Over current protection delay time	$t_{ ext{dOC}}$	T _{vj} =150°C		-	4.0	-	μs
Short circuit protection delay time	$t_{ exttt{dSC}}$	$T_{\rm vi}$ =150°C		-	2.0	-	μs
IGBT chips over heating	T_{jOH}	Surface of IGBT Chips		175	-	-	°C
protection temperature level	I jOH						
Over heating protection hysteresis	T_{jH}			-	20	-	°C
Under voltage protection level	$V_{\scriptscriptstyle UV}$			11.0	ı	12.5	V
Under voltage protection hysteresis	$V_{\scriptscriptstyle H}$			0.2	0.5	-	V
	$t_{\scriptscriptstyle ALM(OC)}$	ALM-GND		1.0	2.0	2.4	ms
Alarm signal hold time	$t_{ALM(UV)}$	T _C =-20∼125°C	V _{cc} ≧10V	3.5	4.0	4.5	ms
	$t_{\text{ALM(TjOH)}}$			7.0	8.0	9.0	ms
Alarm signal voltage	V_{ALMH}	ALM-GND, without protection	ſ	14.5	1	15.0	V
Resistance for current limit	$R_{\scriptscriptstyle ALM}$			960	-	1570	Ω

■ Thermal resistance characteristics ($T_c = 25^{\circ}C$)

Item			Symbol	Min.	Тур.	Max.	Units
Thermal resistance	Inverter	RC-IGBT	$R_{ m th(j-c)}$	-	-	1.12	K/W K/W
junction to case	Brake	IGBT	$R_{ m th(i-c)Q}$	-	-	-	K/W
*12	Diake	FWD	$R_{th(i-c)D}$	-	1	-	K/W
Thermal resistance case to heat sink *13			$R_{ m th(c-s)}$	-	0.05	-	K/W

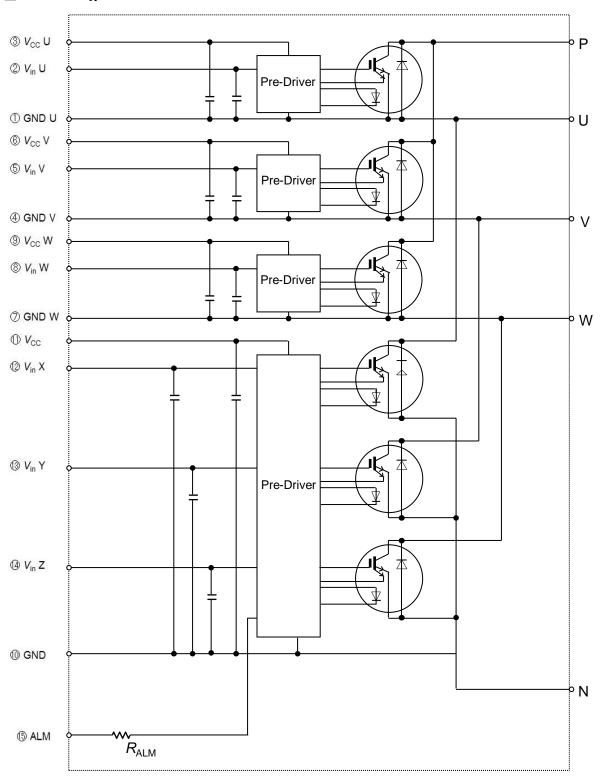
^{*12:} For 1 device, the measurement point of the case is just under the chip.

■ Noise immunity (V_{DC} =300V, V_{CC} =15V)

Item	Conditions	Min.	Тур.	Max.	Units
1	Pulse width 1µs,polarity ±,10min.	±2.0	-	-	kV
Rectangular noise	Judge: no over-current, no miss operating				

■ Recommended operating conditions

Item	Symbol	Min.	Тур.	Max.	Units
DC bus voltage	$V_{ exttt{DC}}$	-	ı	400	V
Power supply voltage of pre-driver	V_{cc}	13.5	15.0	16.5	V
Switching frequency of IPM	$f_{_{\mathrm{SW}}}$	-	ı	20.0	kHz
Arm shoot through blocking time for IPM's input signal *14	$t_{\sf dead}$	1.5	-	-	μs
Screw torque (M4)	-	1.3	-	1.7	Nm


^{*14:} $t_{\text{dead}} = t_{\text{off}} - t_{\text{d(on)}}$

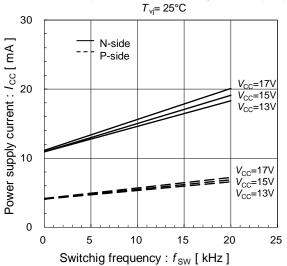
^{*13:} This is the value which is defined mounting on the additional heat sink with 1 W/(m·K) thermal grease.

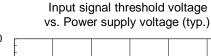
IGBT Modules

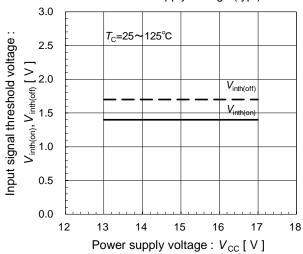
■ Block diagram

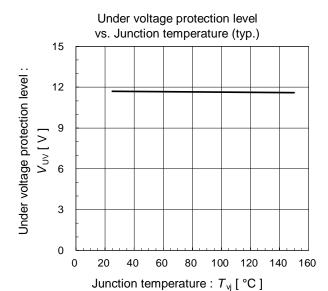
Pre-drivers include following functions

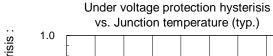
- 1. Amplifier for driver
- 2. Short circuit protection3. Under voltage lockout circuit
- 4. Over current protection
- 5. IGBT chip over heating protection

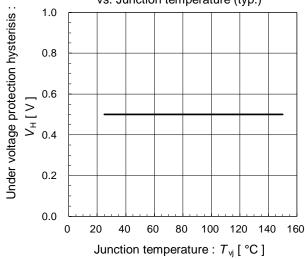


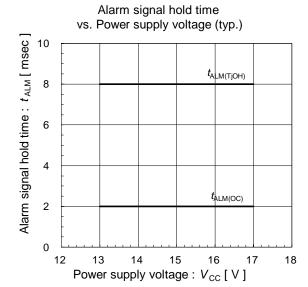

IGBT Modules

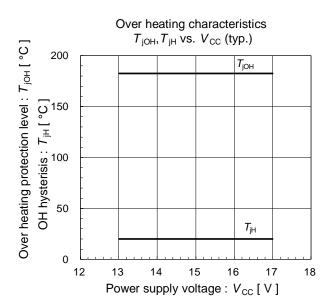

■ Characteristics (representative)

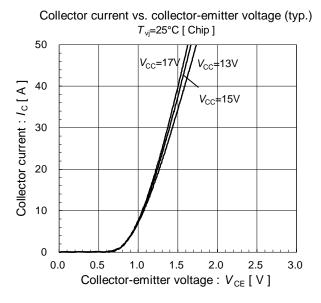

Control circuit

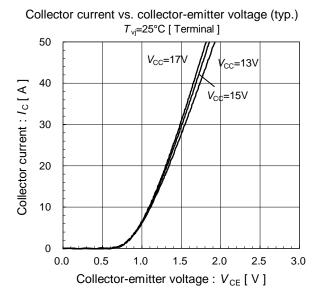

Power supply current vs. switching frequency (typ.)

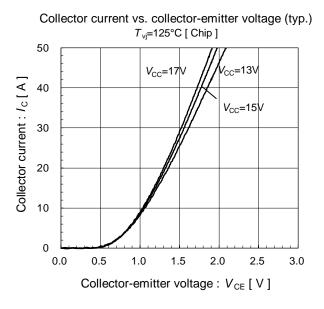


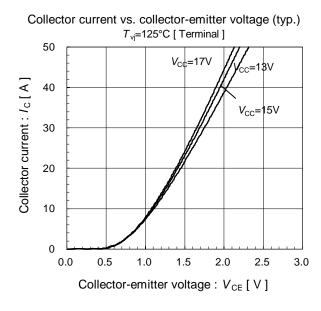


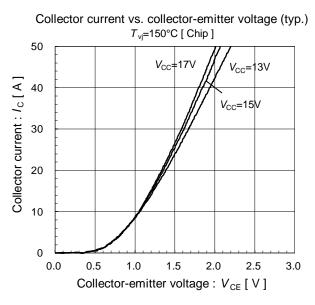


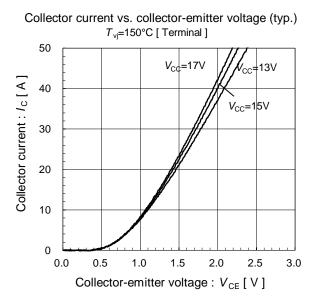


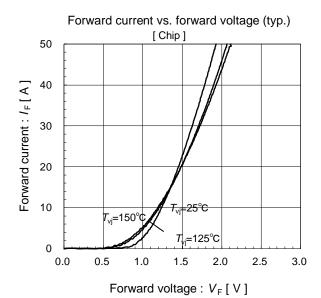


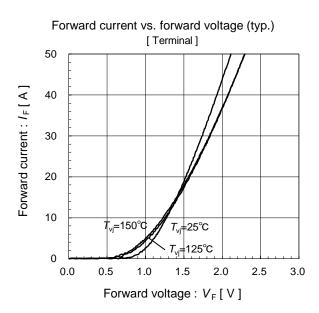


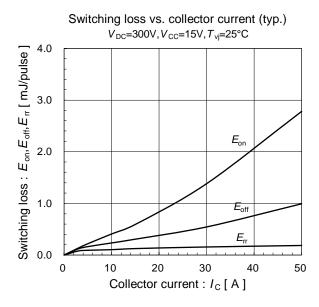

IGBT Modules

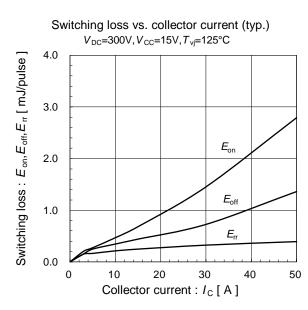

Inverter

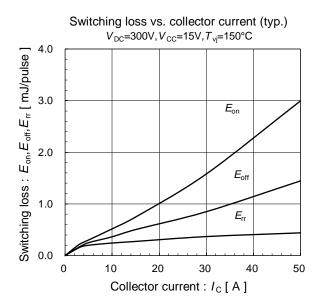


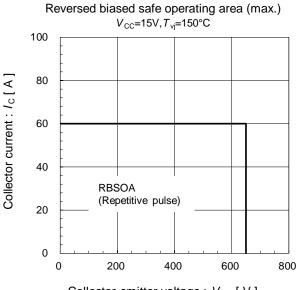


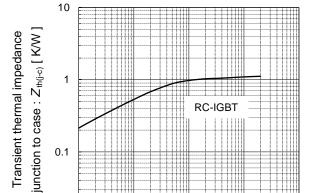






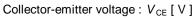

IGBT Modules

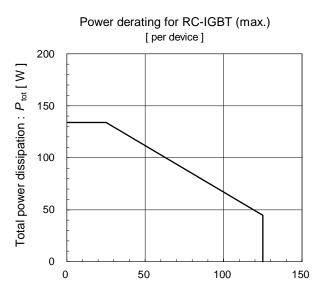




IGBT Modules

10

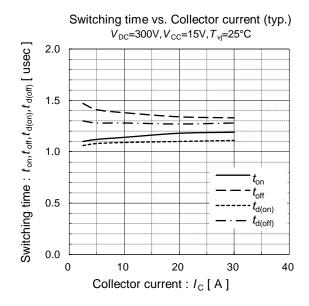


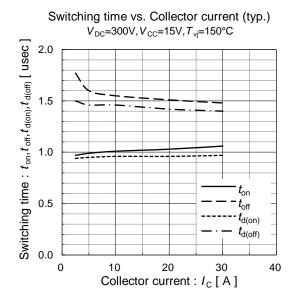

Transient thermal resistance (max.)

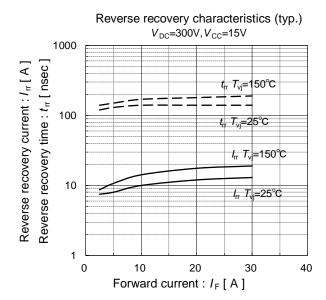
Pulse width : Pw [sec]

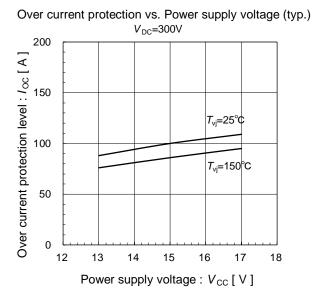
0.01

0.001






Case Temperature : $T_{\rm C}$ [°C]



IGBT Modules

IGBT Modules

Warnings

- This Catalog contains the product specifications, characteristics, data, materials, and structures as of 12/2020
 The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sure to obtain the latest specifications.
- 2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.
- 3. Although Fuji Electric Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design fail-safe, flame retardant, and free of malfunction.
- 4. The products introduced in this Catalog are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
 - ·Computers ·OA equipment ·Communications equipment (terminal devices) ·Measurement equipment
 - · Machine tools · Audiovisual equipment · Electrical home appliances · Personal equipment · Industrial robots etc.
- 5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.
 - ·Transportation equipment (mounted on cars and ships) ·Trunk communications equipment
 - ·Traffic-signal control equipment ·Gas leakage detectors with an auto-shut-off feature
 - · Emergency equipment for responding to disasters and anti-burglary devices · Safety devices · Medical equipment
- 6. Do not use products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to strategic equipment (without limitation).
 - · Space equipment · Aeronautic equipment · Nuclear control equipment · Submarine repeater equipment
- 7. Copyright (c)1996-2020 by Fuji Electric Co., Ltd. All rights reserved.

 No part of this Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Co., Ltd.
- 8. If you have any question about any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the product. Neither Fuji Electric Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.

Technical Information

IGBT Modules

- Please refer to URLs below for futher information about products, application manuals and design support.
- ●关于本规格书中没有记载的产品信息,应用手册,技术信息等,请参考以下链接。
- ●本データシートに記載されていない製品情報,アプリケーションマニュアル,デザインサポートは以下のURLをご参照下さい。

FUJI ELECTRIC Power Semiconductor WEB site				
日本	www.fujielectric.co.jp/products/semiconductor/			
Global	www.fujielectric.com/products/semiconductor/			
中国	www.fujielectric.com.cn/products/semiconductor/			
Europe	www.fujielectric-europe.com/en/power_semiconductor/			
North America	www.americas.fujielectric.com/products/semiconductors/			

iniormation	
日本	
1 半導体総合カタログ	www.fujielectric.co.jp/products/semiconductor/catalog/
2 製品情報	www.fujielectric.co.jp/products/semiconductor/model/
3 アプリケーションマニュアル	www.fujielectric.co.jp/products/semiconductor/model/igbt/application/
4 デザインサポート	www.fujielectric.co.jp/products/semiconductor/model/igbt/technical/
5 マウンティングインストラクション	www.fujielectric.co.jp/products/semiconductor/model/igbt/mounting/
6 IGBT 損失シミュレーションソフト	www.fujielectric.co.jp/products/semiconductor/model/igbt/simulation/
7 富士電機技報	www.fujielectric.co.jp/products/semiconductor/journal/
8 製品のお問い合わせ	www.fujielectric.co.jp/products/semiconductor/contact/
9 改廃のお知らせ	www.fujielectric.co.jp/products/semiconductor/discontinued/

www.fujielectric.com/products/semiconductor/catalog/
www.fujielectric.com/products/semiconductor/model/
www.fujielectric.com/products/semiconductor/model/igbt/application/
www.fujielectric.com/products/semiconductor/model/igbt/technical/
www.fujielectric.com/products/semiconductor/model/igbt/mounting/
www.fujielectric.com/products/semiconductor/model/igbt/simulation/
www.fujielectric.com/products/semiconductor/journal/
www.fujielectric.com/contact/
www.fujielectric.com/products/semiconductor/discontinued/

中国	
1 半导体综合目录	www.fujielectric.com.cn/products/semiconductor/catalog/
2 产品信息	www.fujielectric.com.cn/products/semiconductor/model/
3 应用手册	www.fujielectric.com.cn/products/semiconductor/model/igbt/application/
4 技术信息	www.fujielectric.com.cn/products/semiconductor/model/igbt/technical/
5 安装说明书	www.fujielectric.com.cn/products/semiconductor/model/igbt/mounting/
6 IGBT 损耗模拟软件	www.fujielectric.com.cn/products/semiconductor/model/igbt/simulation/
7 富士电机技报	www.fujielectric.com.cn/products/semiconductor/journal/
8 产品咨询	www.fujielectric.com/contact/
9 产品更改和停产信息	www.fujielectric.com.cn/products/semiconductor/discontinued/